
1

Slide 6- 1Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter

Functions6

2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Modular Programming6.1

Slide 6- 4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Modular Programming

Modular programming: breaking a program up
into smaller, manageable functions or modules

Function: a collection of statements to perform a
task
Motivation for modular programming:

Improves maintainability of programs
Simplifies the process of writing programs

3

Slide 6- 5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Defining and Calling
Functions6.2

4

Slide 6- 7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Defining and Calling Functions

Function call: statement causes a function to
execute

Function definition: statements that make up a
function

Slide 6- 8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Definition

Definition includes:
return type: data type of the value that
function returns to the part of the program
that called it
name: name of the function. Function
names follow same rules as variables
parameter list: variables containing values
passed to the function
body: statements that perform the function’s
task, enclosed in {}

5

Slide 6- 9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Definition

Note: The line that reads int main() is the
function header.

Slide 6- 10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Return Type

If a function returns a value, the type of the
value must be indicated:
int main()

If a function does not return a value, its return
type is void:
void printHeading()
{

cout << "Monthly Sales\n";
}

6

Slide 6- 11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calling a Function

To call a function, use the function name followed
by () and ;
printHeading();

When called, program executes the body of the
called function

After the function terminates, execution resumes
in the calling function at point of call.

Slide 6- 12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7

Slide 6- 13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Flow of Control in Program 6-1

Slide 6- 14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calling Functions

main can call any number of functions
Functions can call other functions
Compiler must know the following about a
function before it is called:

name
return type
number of parameters
data type of each parameter

8

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Prototypes6.3

Slide 6- 16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Prototypes

Ways to notify the compiler about a function
before a call to the function:

Place function definition before calling
function’s definition

Use a function prototype (function declaration)
– like the function definition without the body

Header: void printHeading()
Prototype: void printHeading();

9

Slide 6- 17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

Slide 6- 18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program 6-5 (Continued)

10

Slide 6- 19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Prototype Notes

Place prototypes near top of program

Program must include either prototype or full function
definition before any call to the function – compiler error
otherwise

When using prototypes, can place function definitions in
any order in source file

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Sending Data into a
Function6.4

11

Slide 6- 21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Sending Data into a Function

Can pass values into a function at time of call:
c = pow(a, b);

Values passed to function are arguments

Variables in a function that hold the values passed as
arguments are parameters

Slide 6- 22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Function with a Parameter
Variable

void displayValue(int num)

{

cout << "The value is " << num << endl;

}

The integer variable num is a parameter.
It accepts any integer value passed to the function.

12

Slide 6- 23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

Slide 6- 24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13

Slide 6- 25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The function call in line 11 passes the value 5
as an argument to the function.

Slide 6- 26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Other Parameter Terminology

A parameter can also be called a formal
parameter or a formal argument
An argument can also be called an actual
parameter or an actual argument

14

Slide 6- 27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Parameters, Prototypes, and
Function Headers

For each function argument,
the prototype must include the data type of
each parameter inside its parentheses
the header must include a declaration for
each parameter in its ()
void evenOrOdd(int); //prototype
void evenOrOdd(int num) //header

evenOrOdd(val); //call

Slide 6- 28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Call Notes

Value of argument is copied into parameter when the
function is called
A parameter’s scope is the function which uses it
Function can have multiple parameters
There must be a data type listed in the prototype () and an
argument declaration in the function header () for each
parameter
Arguments will be promoted/demoted as necessary to
match parameters

15

Slide 6- 29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Multiple Arguments

When calling a function and passing multiple
arguments:

the number of arguments in the call must
match the prototype and definition

the first argument will be used to initialize the
first parameter, the second argument to
initialize the second parameter, etc.

Slide 6- 30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

16

Slide 6- 31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program 6-8 (Continued)

Slide 6- 32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The function call in line 18 passes value1,
value2, and value3 as a arguments to the
function.

17

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Data by Value6.5

Slide 6- 34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Data by Value

Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

Changes to the parameter in the function do not
affect the value of the argument

18

Slide 6- 35Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Information to Parameters
by Value

Example: int val=5;
evenOrOdd(val);

evenOrOdd can change variable num, but it will
have no effect on variable val

5
val

argument in
calling function

5
num

parameter in
evenOrOdd function

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Functions in
Menu-Driven Programs6.6

19

Slide 6- 37Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Functions in
Menu-Driven Programs

Functions can be used
to implement user choices from menu
to implement general-purpose tasks:

Higher-level functions can call general-purpose
functions, minimizing the total number of
functions and speeding program development
time

See Program 6-10 in the book

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The return Statement6.7

20

Slide 6- 39Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The return Statement

Used to end execution of a function
Can be placed anywhere in a function

Statements that follow the return statement
will not be executed

Can be used to prevent abnormal termination of
program
In a void function without a return statement,
the function ends at its last }

Slide 6- 40Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

21

Slide 6- 41Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program 6-11(Continued)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning a Value
From a Function6.8

22

Slide 6- 43Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning a Value From a Function

A function can return a value back to the
statement that called the function.
You've already seen the pow function, which
returns a value:

double x;
x = pow(2.0, 10.0);

Slide 6- 44Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning a Value From a Function

In a value-returning function, the return statement
can be used to return a value from function to the point
of call. Example:

int sum(int num1, int num2)
{

double result;
result = num1 + num2;
return result;

}

23

Slide 6- 45Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Value-Returning Function

int sum(int num1, int num2)
{

double result;
result = num1 + num2;
return result;

}

Return Type

Value Being Returned

Slide 6- 46Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Value-Returning Function

int sum(int num1, int num2)
{

return num1 + num2;
}

Functions can return the values of
expressions, such as num1 + num2

24

Slide 6- 47Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

Slide 6- 48Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program 6-12 (Continued)

25

Slide 6- 49Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The statement in line 17 calls the sum function,
passing value1 and value2 as arguments.
The return value is assigned to the total variable.

Slide 6- 50Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Another Example, from
Program 6-13

26

Slide 6- 51Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning a Value From a Function

The prototype and the definition must indicate
the data type of return value (not void)

Calling function should use return value:
assign it to a variable
send it to cout
use it in an expression

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning a Boolean
Value6.9

27

Slide 6- 53Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning a Boolean Value

Function can return true or false
Declare return type in function prototype and
heading as bool
Function body must contain return statement(s)
that return true or false
Calling function can use return value in a
relational expression

Slide 6- 54Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

28

Slide 6- 55Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Local and
Global Variables6.10

29

Slide 6- 57Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Local and Global Variables

Variables defined inside a function are local to
that function. They are hidden from the
statements in other functions, which normally
cannot access them.
Because the variables defined in a function are
hidden, other functions may have separate,
distinct variables with the same name.

Slide 6- 58Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

30

Slide 6- 59Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

When the program is executing in main, the num
variable defined in main is visible. When anotherFunction
is called, however, only variables defined inside it are visible,
so the num variable in main is hidden.

Slide 6- 60Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Local Variable Lifetime
A function’s local variables exist only while the function is
executing. This is known as the lifetime of a local
variable.

When the function begins, its local variables and its
parameter variables are created in memory, and when
the function ends, the local variables and parameter
variables are destroyed.

This means that any value stored in a local variable is
lost between calls to the function in which the variable is
declared.

31

Slide 6- 61Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Global Variables and
Global Constants

A global variable is any variable defined outside all the
functions in a program.

The scope of a global variable is the portion of the
program from the variable definition to the end.

This means that a global variable can be accessed by all
functions that are defined after the global variable is
defined.

Slide 6- 62Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Global Variables and
Global Constants

You should avoid using global variables because
they make programs difficult to debug.

Any global that you create should be global
constants.

32

Slide 6- 63Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Global constants
defined for values that do not
change throughout the
program’s execution.

Slide 6- 64Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The constants are then used for
those values throughout the program.

33

Slide 6- 65Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Initializing Local and Global Variables

Local variables are not automatically initialized.
They must be initialized by programmer.

Global variables (not constants) are
automatically initialized to 0 (numeric) or NULL
(character) when the variable is defined.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Local Variables6.11

34

Slide 6- 67Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Local Variables

Local variables only exist while the function is executing.
When the function terminates, the contents of local
variables are lost.

static local variables retain their contents between
function calls.

static local variables are defined and initialized only the
first time the function is executed. 0 is the default
initialization value.

Slide 6- 68Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

35

Slide 6- 69Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

In this program, each time showLocal is called, the
localNum variable is re-created and initialized with the
value 5.

Slide 6- 70Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Different Approach, Using a Static
Variable

(Program Continues)

36

Slide 6- 71Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

statNum is automatically initialized
to 0. Notice that it retains its value
between function calls.

Slide 6- 72Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

If you do initialize a local static variable, the
initialization only happens once. See Program 6-22…

37

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Default Arguments6.12

Slide 6- 74Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Default Arguments

A Default argument is an argument that is passed
automatically to a parameter if the argument is missing on
the function call.

Must be a constant declared in prototype:
void evenOrOdd(int = 0);

Can be declared in header if no prototype

Multi-parameter functions may have default arguments for
some or all of them:

int getSum(int, int=0, int=0);

38

Slide 6- 75Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Default arguments specified in the prototype

(Program Continues)

Slide 6- 76Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program 6-23 (Continued)

39

Slide 6- 77Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Default Arguments

If not all parameters to a function have default
values, the defaultless ones are declared first in
the parameter list:
int getSum(int, int=0, int=0);// OK
int getSum(int, int=0, int); // NO

When an argument is omitted from a function call,
all arguments after it must also be omitted:
sum = getSum(num1, num2); // OK
sum = getSum(num1, , num3); // NO

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Reference
Variables as
Parameters

6.13

40

Slide 6- 79Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Reference Variables as
Parameters

A mechanism that allows a function to work with
the original argument from the function call, not
a copy of the argument
Allows the function to modify values stored in the
calling environment
Provides a way for the function to ‘return’ more
than one value

Slide 6- 80Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing by Reference

A reference variable is an alias for another
variable
Defined with an ampersand (&)
void getDimensions(int&, int&);

Changes to a reference variable are made to the
variable it refers to
Use reference variables to implement passing
parameters by reference

41

Slide 6- 81Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The & here in the prototype indicates that
the parameter is a reference variable.

Here we are passing value
by reference.

(Program Continues)

Slide 6- 82Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The & also appears here in the function header.

Program 6-24 (Continued)

42

Slide 6- 83Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reference Variable Notes

Each reference parameter must contain &
Space between type and & is unimportant
Must use & in both prototype and header
Argument passed to reference parameter must be a
variable – cannot be an expression or constant
Use when appropriate – don’t use when argument should
not be changed by function, or if function needs to return
only 1 value

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Functions6.14

43

Slide 6- 85Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloading Functions

Overloaded functions have the same name but
different parameter lists
Can be used to create functions that perform
the same task but take different parameter
types or different number of parameters
Compiler will determine which version of
function to call by argument and parameter
lists

Slide 6- 86Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Overloading Examples

Using these overloaded functions,
void getDimensions(int); // 1
void getDimensions(int, int); // 2
void getDimensions(int, double); // 3
void getDimensions(double, double);// 4

the compiler will use them as follows:
int length, width;
double base, height;
getDimensions(length); // 1
getDimensions(length, width); // 2
getDimensions(length, height); // 3
getDimensions(height, base); // 4

44

Slide 6- 87Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(Program Continues)

The overloaded
functions have
different parameter
lists

Passing an int

Passing a double

Slide 6- 88Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program 6-26 (Continued)

45

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The exit() Function6.15

Slide 6- 90Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The exit() Function

Terminates the execution of a program
Can be called from any function
Can pass an int value to operating system to
indicate status of program termination
Usually used for abnormal termination of program
Requires cstdlib header file

46

Slide 6- 91Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The exit() Function

Example:
exit(0);

The cstdlib header defines two constants that
are commonly passed, to indicate success or
failure:
exit(EXIT_SUCCESS);
exit(EXIT_FAILURE);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Stubs and Drivers6.16

47

Slide 6- 93Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Stubs and Drivers
Useful for testing and debugging program and
function logic and design
Stub: A dummy function used in place of an
actual function

Usually displays a message indicating it was
called. May also display parameters

Driver: A function that tests another function by
calling it

Various arguments are passed and return
values are tested

